login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352311
Expansion of e.g.f. 1/(exp(x) - x^4/24).
3
1, -1, 1, -1, 2, -11, 61, -281, 1191, -5923, 41791, -354091, 2968021, -24059751, 204718515, -1996937671, 22125450621, -258434553861, 3056858429581, -37181421375349, 482010195953821, -6741275765687821, 99663246605243861, -1521712424934601901
OFFSET
0,5
FORMULA
a(n) = binomial(n,4) * a(n-4) - Sum_{k=1..n} binomial(n,k) * a(n-k) for n > 3.
a(n) ~ n! * 3*(-1)^n / ((1 + LambertW(3^(1/4) / 2^(5/4))) * 2^(2*n + 7) * LambertW(3^(1/4) / 2^(5/4))^(n+4)). - Vaclav Kotesovec, Mar 12 2022
a(n) = n! * Sum_{k=0..floor(n/4)} (-k-1)^(n-4*k)/(24^k*(n-4*k)!). - Seiichi Manyama, Aug 21 2024
MATHEMATICA
m = 23; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^4/24), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^4/24)))
(PARI) b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m))*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 11 2022
STATUS
approved