login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294529
Binomial transform of A001156.
4
1, 2, 4, 8, 17, 38, 86, 192, 420, 905, 1939, 4163, 8987, 19494, 42368, 91990, 199127, 429345, 921982, 1972553, 4206909, 8949412, 19001874, 40293048, 85373962, 180826115, 382957231, 811027414, 1717497958, 3636335170, 7695599294, 16275268520, 34389570596
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A001156(k).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)) * Zeta(3/2)^(2/3) * 2^(n - 7/6) / (sqrt(3) * Pi^(7/6) * n^(7/6)).
G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 - x^(k^2)/(1 - x)^(k^2)). - Ilya Gutkovskiy, Aug 20 2018
MATHEMATICA
nmax = 40; s = CoefficientList[Series[Product[1/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 02 2017
STATUS
approved