login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084635
Binomial transform of 1,0,1,0,1,1,1,...
5
1, 1, 2, 4, 8, 17, 38, 86, 192, 419, 894, 1872, 3864, 7893, 16006, 32298, 64960, 130375, 261310, 523300, 1047416, 2095801, 4192742, 8386814, 16775168, 33552107, 67106238, 134214776, 268432152, 536867229, 1073737734, 2147479122, 4294962304, 8589929103
OFFSET
0,3
COMMENTS
Without its first term, it is the binomial transform of 1,1,1,1,2,2,2,2,2...
FORMULA
a(n) = 2^n - n*(n^2 - 3*n + 8)/6.
a(n) = 1 + C(n, 2) + Sum_{k=4..n} C(n, k).
O.g.f.: (1-5*x+10*x^2-10*x^3+5*x^4)/((1-x)^4*(1-2*x)). - R. J. Mathar, Apr 02 2008
a(n) = A000225(n) - (n-1) - binomial(n, 3). - G. C. Greubel, Mar 19 2023
MATHEMATICA
Table[2^n -n -Binomial[n, 3], {n, 0, 50}] (* G. C. Greubel, Mar 19 2023 *)
PROG
(Magma) [2^n -n*(n^2-3*n+8)/6: n in [0..50]]; // G. C. Greubel, Mar 19 2023
(SageMath) [2^n -n*(n^2-3*n+8)/6 for n in range(51)] # G. C. Greubel, Mar 19 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 06 2003
STATUS
approved