login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154222
Row sums of number triangle A154221.
2
1, 2, 4, 8, 17, 38, 87, 200, 457, 1034, 2315, 5132, 11277, 24590, 53263, 114704, 245777, 524306, 1114131, 2359316, 4980757, 10485782, 22020119, 46137368, 96469017, 201326618, 419430427, 872415260, 1811939357, 3758096414, 7784628255, 16106127392, 33285996577
OFFSET
0,2
FORMULA
a(n) = (1/4)*( 4*(n+1) + (n-1)*2^n + 0^n).
From Colin Barker, Oct 11 2014: (Start)
a(n) = A045618(n-4) + 2^n for n>3.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>4.
a(n) = (4 - 2^n + (4+2^n)*n)/4 for n>0.
G.f.: (x^4 - 2*x^3 + 5*x^2 - 4*x + 1) / ((x-1)^2*(2*x-1)^2).
(End)
E.g.f.: (1/4)*(1 + 4*(1 + x)*exp(x) + (2*x - 1)*exp(2*x)). - G. C. Greubel, Sep 06 2016
MATHEMATICA
Join[{1}, LinearRecurrence[{6, -13, 12, -4}, {2, 4, 8, 17}, 25]] (* or *) Table[(1/4)*( 4*(n+1) + (n-1)*2^n + 0^n), {n, 0, 25}] (* G. C. Greubel, Sep 06 2016 *)
PROG
(PARI) Vec((x^4-2*x^3+5*x^2-4*x+1)/((x-1)^2*(2*x-1)^2) + O(x^100)) \\ Colin Barker, Oct 11 2014
(Magma) [(1/4)*(4*(n+1)+(n-1)*2^n+0^n): n in [0..35]]; // Vincenzo Librandi, Sep 07 2016
CROSSREFS
Sequence in context: A348755 A084635 A294529 * A114199 A006196 A089796
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 05 2009
EXTENSIONS
More terms and xrefs from Colin Barker, Oct 11 2014
STATUS
approved