login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089796
Series reversion of g.f. A(x) is -A(-x).
2
1, 1, 1, 2, 4, 8, 17, 38, 87, 203, 482, 1160, 2822, 6929, 17149, 42736, 107144, 270060, 683940, 1739511, 4441255, 11378814, 29245927, 75386341, 194838673, 504802508, 1310843123, 3411070838, 8893590454, 23230151872, 60780378423, 159281034709
OFFSET
1,4
LINKS
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
FORMULA
G.f. A(x)=y satisfies (x-x^2-x^3)+y*(-1+3*x-x^3)+y^2*(-1+x^2-x^3)+y^3*(1-x+x^2-x^3)=0.
a(n) ~ sqrt((-1 - 3*s + s^3 - 2*r*(-1 + s^2 + s^3) + 3*r^2*(1 + s + s^2 + s^3)) / (1 - 3*s + 3*r*s - r^2*(1 + 3*s) + r^3*(1 + 3*s))) / (2*sqrt(Pi) * n^(3/2) * r^(n-1/2)), where r = 0.3637032853572807454... and s = 0.8232781794881572707... are roots of the system of equations 3*r = 1 + r^3 + 2*(1 - r^2 + r^3)*s + 3*(-1 + r - r^2 + r^3)*s^2, s + s^2 + r*(-1 - 3*s + s^3) + r^3*(1 + s + s^2 + s^3) = s^3 + r^2*(-1 + s^2 + s^3). - Vaclav Kotesovec, Mar 10 2014
MATHEMATICA
terms = 32; A[_] = 0;
Do[A[x_] = (x-x^2-x^3) + (3x-x^3) A[x] + (-1+x^2-x^3) A[x]^2 + (1-x+x^2-x^3) A[x]^3 + O[x]^(terms+1) // Normal, {terms+1}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Nov 10 2018 *)
PROG
(PARI) a(n)=local(A); if(n<1, 0, A=O(x); for(k=1, n, A=(x-x^2-x^3)+A*(3*x-x^3)+A^2*(-1+x^2-x^3)+A^3*(1-x+x^2-x^3)); polcoeff(A, n))
CROSSREFS
a(n) = A006196(n) if n<28.
Sequence in context: A154222 A114199 A006196 * A112482 A193050 A107597
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 10 2003
STATUS
approved