login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089798
Expansion of Jacobi theta function theta_4(q^2).
2
1, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
For n > 0, a(n) = 2*(floor(sqrt(n/2)) - floor(sqrt((n-1)/2)))*(-1)^floor(sqrt(n/2)). - Mikael Aaltonen, Jan 18 2015
MATHEMATICA
a[n_] := SeriesCoefficient[ EllipticTheta[4, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)
PROG
(PARI) for(n=0, 50, print1(if(n==0, 1, 2*(floor(sqrt(n/2)) - floor(sqrt((n-1)/2)))*(-1)^floor(sqrt(n/2))), ", ")) \\ G. C. Greubel, Nov 20 2017
CROSSREFS
Cf. A002448.
Sequence in context: A316897 A151756 A112053 * A070536 A318886 A369873
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved