The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089800 Expansion of Jacobi theta function theta_2(q)/q^(1/4). 2
 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Eric Weisstein's World of Mathematics, Jacobi Theta Functions I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990. FORMULA For n > 0, a(n) = 2*(floor(sqrt(n+1/4)-1/2) - floor(sqrt(n-1+1/4)-1/2)). - Mikael Aaltonen, Jan 18 2015 a(n) = 2*(floor(sqrt(n+1)+1/2)-floor(sqrt(n)+1/2)). - Mikael Aaltonen, Jan 20 2015 a(n) = 2*A005369(n). - Michel Marcus, Jan 20 2015 MAPLE A089800 := proc(n)     if issqr(1+4*n) then         if type( sqrt(1+4*n)-1, 'even') then             2;         else             0;         end if;     else         0;     end if; end proc: seq( A089800(n), n=0..40) ; # R. J. Mathar, Feb 22 2021 MATHEMATICA a[n_] := SeriesCoefficient[ EllipticTheta[2, 0, q]/q^(1/4), {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *) Table[2*(Floor[Sqrt[n+1]+1/2] - Floor[Sqrt[n]+1/2]), {n, 0, 50}] (* G. C. Greubel, Nov 20 2017 *) PROG (PARI) for(n=0, 50, print1(2*(floor(sqrt(n+1)+1/2) - floor(sqrt(n)+1/2)), ", ")) \\ G. C. Greubel, Nov 20 2017 (MAGMA) [2*(Floor(Sqrt(n+1)+1/2) - Floor(Sqrt(n)+1/2)): n in [0..50]]; // G. C. Greubel, Nov 20 2017 CROSSREFS Sequence in context: A069517 A193526 A160498 * A079208 A262682 A318983 Adjacent sequences:  A089797 A089798 A089799 * A089801 A089802 A089803 KEYWORD nonn AUTHOR Eric W. Weisstein, Nov 12 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 08:42 EDT 2021. Contains 346285 sequences. (Running on oeis4.)