login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A160498
Number of cubic primitive Dirichlet characters modulo n.
16
1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0
OFFSET
1,7
COMMENTS
Also called primitive Dirichlet characters of order 3.
Mobius transform of A060839.
C. David, J. Fearnley & H. Kisilevsky prove that Sum_{k=1..n} a(k) ~ C*n, with C = (11*sqrt(3)/(18*Pi)) * Product_{primes p == 1 (mod 3)} (1 - 2/(p*(p+1))) = 0.3170565167922841205670156...; they credit Cohen, F. Diaz y Diaz, & M. Olivier 2002 (see Proposition 5.2. and Corollary 5.3.). - Charles R Greathouse IV, Aug 26 2009 [corrected by Vaclav Kotesovec, Sep 16 2020]
a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a cubic root of unity: 1, w = (-1 + sqrt(3)*i)/2 or w^2 = (-1 - sqrt(3)*i)/2. - Jianing Song, Feb 27 2019
Every term is 0 or a power of 2. - Jianing Song, Mar 02 2019
From Jianing Song, Apr 03 2021: (Start)
For n >= 2, a(n) is the number of cyclic cubic fields with discriminant n^2. See A343023 for detailed information.
The first occurrence of 2^t is 9*A121940(t-1) for t >= 2. (End)
LINKS
C. David, J. Fearnley and H. Kisilevsky,On the vanishing of twisted L-functions of elliptic curves, Experim. Math. 13 (2004) 185-198.
Steven R. Finch, Quartic and Octic Characters Modulo n, arXiv:0907.4894 [math.NT], 2016.
FORMULA
Multiplicative with a(p^e) = 2 if p^e = 9 or p == 1 (mod 3) and e = 1, otherwise 0. - Jianing Song, Mar 02 2019
a(n) = 2*A343023(n) for n >= 2. - Jianing Song, Apr 03 2021
EXAMPLE
From Jianing Song, Mar 02 2019: (Start)
Let w = (-1 + sqrt(3)*i)/2 be one of the primitive 3rd root of unity.
For n = 7, the 2 cubic primitive Dirichlet characters modulo n are [0, 1, w, w^2, w^2, w, 1] and [0, 1, w^2, w, w, w^2, 1], so a(7) = 2.
For n = 9, the 2 cubic primitive Dirichlet characters modulo n are [0, 1, w, 0, w^2, w^2, 0, w, 1] and [0, 1, w^2, 0, w, w, 0, w^2, 1], so a(9) = 2. (End)
MATHEMATICA
A060839[n_] := Sum[If[Mod[k^3 - 1, n] == 0, 1, 0], {k, 1, n}]; a[n_] := Sum[ MoebiusMu[n/d]*A060839[d], {d, Divisors[n]}]; Table[a[n], {n, 2, 81}] (* Jean-François Alcover, Jun 19 2013 *)
f[3, 2] = 2; f[p_, e_] := If[Mod[p, 3] == 1 && e == 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^3-1)%d, 0, 1)), 0)) \\ Steven Finch, Jun 09 2009
(PARI) A005088(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]%3==1)
A060839(n)=3^((n%9==0)+A005088(n))
a(n)=sumdiv(n, d, moebius(n/d)*A060839(d)) \\ Charles R Greathouse IV, Aug 26 2009
(PARI) a(n) = my(L=factor(n), w=omega(n)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 2^w \\ Jianing Song, Apr 03 2021
CROSSREFS
Cf. A114643 (number of quadratic primitive Dirichlet characters modulo n), A160499 (number of quartic primitive Dirichlet characters modulo n).
Cf. A060839 (number of solutions to x^3 == 1 (mod n)).
Sequence in context: A218855 A069517 A193526 * A089800 A079208 A262682
KEYWORD
mult,nonn
AUTHOR
Steven Finch, May 15 2009
EXTENSIONS
a(1) = 1 prepended by Jianing Song, Feb 27 2019
STATUS
approved