login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160498 Number of cubic primitive Dirichlet characters modulo n. 15
1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Also called primitive Dirichlet characters of order 3.

Mobius transform of A060839.

C. David, J. Fearnley & H. Kisilevsky prove that Sum_{k=1..n} a(k) ~ C*n, with C = (11*sqrt(3)/(18*Pi)) * Product_{primes p == 1 (mod 3)} (1 - 2/(p*(p+1))) = 0.3170565167922841205670156...; they credit Cohen, F. Diaz y Diaz, & M. Olivier 2002 (see Proposition 5.2. and Corollary 5.3.). - Charles R Greathouse IV, Aug 26 2009 [corrected by Vaclav Kotesovec, Sep 16 2020]

a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a cubic root of unity: 1, w = (-1 + sqrt(3)*i)/2 or w^2 = (-1 - sqrt(3)*i)/2). - Jianing Song, Feb 27 2019

Every term is 0 or a power of 2. - Jianing Song, Mar 02 2019

From Jianing Song, Apr 03 2021: (Start)

For n >= 2, a(n) is the number of cyclic cubic fields with discriminant n^2. See A343023 for detailed information.

The first occurrence of 2^t is 9*A121940(t-1) for t >= 2. (End)

LINKS

Jianing Song, Table of n, a(n) for n = 1..10000

C. David, J. Fearnley and H. Kisilevsky,On the vanishing of twisted L-functions of elliptic curves, Experim. Math. 13 (2004) 185-198.

Steven R. Finch, Cubic and quartic characters.

Steven R. Finch, Cubic and quartic characters.

Steven R. Finch, Quartic and Octic Characters Modulo n, arXiv:0907.4894 [math.NT], 2016.

Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k) / n for n = 1..10000000

FORMULA

Multiplicative with a(p^e) = 2 if p^e = 9 or p == 1 (mod 3) and e = 1, otherwise 0. - Jianing Song, Mar 02 2019

a(n) = 2*A343023(n) for n >= 2. - Jianing Song, Apr 03 2021

EXAMPLE

From Jianing Song, Mar 02 2019: (Start)

Let w = (-1 + sqrt(3)*i)/2 be one of the primitive 3rd root of unity.

For n = 7, the 2 cubic primitive Dirichlet characters modulo n are [0, 1, w, w^2, w^2, w, 1] and [0, 1, w^2, w, w, w^2, 1], so a(7) = 2.

For n = 9, the 2 cubic primitive Dirichlet characters modulo n are [0, 1, w, 0, w^2, w^2, 0, w, 1] and [0, 1, w^2, 0, w, w, 0, w^2, 1], so a(9) = 2. (End)

MATHEMATICA

A060839[n_] := Sum[If[Mod[k^3 - 1, n] == 0, 1, 0], {k, 1, n}]; a[n_] := Sum[ MoebiusMu[n/d]*A060839[d], {d, Divisors[n]}]; Table[a[n], {n, 2, 81}] (* Jean-Fran├žois Alcover, Jun 19 2013 *)

f[3, 2] = 2; f[p_, e_] := If[Mod[p, 3] == 1 && e == 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)

PROG

(PARI) a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^3-1)%d, 0, 1)), 0)) \\ Steven Finch, Jun 09 2009

(PARI) A005088(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]%3==1)

A060839(n)=3^((n%9==0)+A005088(n))

a(n)=sumdiv(n, d, moebius(n/d)*A060839(d)) \\ Charles R Greathouse IV, Aug 26 2009

(PARI) a(n) = my(L=factor(n), w=omega(n)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 2^w \\ Jianing Song, Apr 03 2021

CROSSREFS

Cf. A114643 (number of quadratic primitive Dirichlet characters modulo n), A160499 (number of quartic primitive Dirichlet characters modulo n).

Cf. A060839 (number of solutions to x^3 == 1 (mod n)).

Cf. A121940, A343023.

Sequence in context: A218855 A069517 A193526 * A089800 A079208 A262682

Adjacent sequences:  A160495 A160496 A160497 * A160499 A160500 A160501

KEYWORD

mult,nonn

AUTHOR

Steven Finch, May 15 2009

EXTENSIONS

a(1) = 1 prepended by Jianing Song, Feb 27 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 17:37 EDT 2021. Contains 346294 sequences. (Running on oeis4.)