OFFSET
1,7
COMMENTS
Also called primitive Dirichlet characters of order 3.
Mobius transform of A060839.
C. David, J. Fearnley & H. Kisilevsky prove that Sum_{k=1..n} a(k) ~ C*n, with C = (11*sqrt(3)/(18*Pi)) * Product_{primes p == 1 (mod 3)} (1 - 2/(p*(p+1))) = 0.3170565167922841205670156...; they credit Cohen, F. Diaz y Diaz, & M. Olivier 2002 (see Proposition 5.2. and Corollary 5.3.). - Charles R Greathouse IV, Aug 26 2009 [corrected by Vaclav Kotesovec, Sep 16 2020]
a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a cubic root of unity: 1, w = (-1 + sqrt(3)*i)/2 or w^2 = (-1 - sqrt(3)*i)/2. - Jianing Song, Feb 27 2019
Every term is 0 or a power of 2. - Jianing Song, Mar 02 2019
From Jianing Song, Apr 03 2021: (Start)
For n >= 2, a(n) is the number of cyclic cubic fields with discriminant n^2. See A343023 for detailed information.
The first occurrence of 2^t is 9*A121940(t-1) for t >= 2. (End)
LINKS
Jianing Song, Table of n, a(n) for n = 1..10000
C. David, J. Fearnley and H. Kisilevsky,On the vanishing of twisted L-functions of elliptic curves, Experim. Math. 13 (2004) 185-198.
Steven R. Finch, Cubic and quartic characters.
Steven R. Finch, Cubic and quartic characters.
Steven R. Finch, Quartic and Octic Characters Modulo n, arXiv:0907.4894 [math.NT], 2016.
Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k) / n for n = 1..10000000
FORMULA
Multiplicative with a(p^e) = 2 if p^e = 9 or p == 1 (mod 3) and e = 1, otherwise 0. - Jianing Song, Mar 02 2019
a(n) = 2*A343023(n) for n >= 2. - Jianing Song, Apr 03 2021
EXAMPLE
From Jianing Song, Mar 02 2019: (Start)
Let w = (-1 + sqrt(3)*i)/2 be one of the primitive 3rd root of unity.
For n = 7, the 2 cubic primitive Dirichlet characters modulo n are [0, 1, w, w^2, w^2, w, 1] and [0, 1, w^2, w, w, w^2, 1], so a(7) = 2.
For n = 9, the 2 cubic primitive Dirichlet characters modulo n are [0, 1, w, 0, w^2, w^2, 0, w, 1] and [0, 1, w^2, 0, w, w, 0, w^2, 1], so a(9) = 2. (End)
MATHEMATICA
A060839[n_] := Sum[If[Mod[k^3 - 1, n] == 0, 1, 0], {k, 1, n}]; a[n_] := Sum[ MoebiusMu[n/d]*A060839[d], {d, Divisors[n]}]; Table[a[n], {n, 2, 81}] (* Jean-François Alcover, Jun 19 2013 *)
f[3, 2] = 2; f[p_, e_] := If[Mod[p, 3] == 1 && e == 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^3-1)%d, 0, 1)), 0)) \\ Steven Finch, Jun 09 2009
(PARI) A005088(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]%3==1)
a(n)=sumdiv(n, d, moebius(n/d)*A060839(d)) \\ Charles R Greathouse IV, Aug 26 2009
(PARI) a(n) = my(L=factor(n), w=omega(n)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 2^w \\ Jianing Song, Apr 03 2021
CROSSREFS
KEYWORD
mult,nonn
AUTHOR
Steven Finch, May 15 2009
EXTENSIONS
a(1) = 1 prepended by Jianing Song, Feb 27 2019
STATUS
approved