login
A079208
Number of isomorphism classes of associative non-commutative non-anti-associative anti-commutative closed binary operations on a set of order n, listed by class size.
9
0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,3
COMMENTS
Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
The only closed binary operations that are both commutative and anti-commutative are those on sets of size <= 1. The significance of non-commutative (and non-anti-associative) in the name is that it excludes this possibility. Otherwise, the first two terms would be 1. - Andrew Howroyd, Jan 26 2022
FORMULA
A079202(n,k) + A079203(n,k) + A079204(n,k) + A079205(n,k) + A079197(n,k) + A079207(n,k) + T(n,k) + A079201(n,k) = A079171(n,k).
A079242(n,k) = Sum_{k>=1} T(n,k)*A079210(n,k).
EXAMPLE
Triangle T(n,k) begins:
0;
0;
2, 0;
2, 0, 0, 0;
2, 0, 0, 0, 1, 0, 0, 0;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
CROSSREFS
Row sums give A079243.
Sequence in context: A193526 A160498 A089800 * A262682 A318983 A318982
KEYWORD
nonn,tabf
AUTHOR
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
EXTENSIONS
a(0)=0 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022
STATUS
approved