OFFSET
1,41
COMMENTS
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -163.
Half of the number of integer solutions to x^2 + x*y + 41*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-163)] counted up to association.
Inverse Moebius transform of A011615.
LINKS
Jianing Song, Table of n, a(n) for n = 1..10000
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS.
FORMULA
a(n) is multiplicative with a(163^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-163, p) = -1, a(p^e) = e + 1 if Kronecker(-163, p) = 1.
G.f.: Sum_{k>0} Kronecker(-163, k) * x^k / (1 - x^k).
A318985(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(163) = 0.246068... . - Amiram Eldar, Dec 16 2023
EXAMPLE
G.f. = x + x^4 + x^9 + x^16 + x^25 + x^36 + 2*x^41 + 2*x^43 + 2*x^47 + x^49 + 2*x^53 + 2*x^61 + x^64 + 2*x^71 + ...
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[-163, #] &]; Array[a, 100] (* Amiram Eldar, Dec 16 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, kronecker(-163, d))
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jianing Song, Sep 06 2018
STATUS
approved