The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318982 a(n) = Sum_{d|n} Kronecker(-67, d). 5
 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,17 COMMENTS Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -67. Half of the number of integer solutions to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)] counted up to association. Inverse Moebius transform of A011596. LINKS Jianing Song, Table of n, a(n) for n = 1..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS FORMULA a(n) is multiplicative with a(67^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, a(p^e) = e + 1 if Kronecker(-67, p) = 1. G.f.: Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k). A318984(n) = 2 * a(n) unless n = 0. EXAMPLE G.f. = x + x^4 + x^9 + x^16 + 2*x^17 + 2*x^19 + 2*x^23 + x^25 + 2*x^29 + x^36 + 2*x^37 + 2*x^47 + x^49 + 2*x^59 + x^64 + x^67 + 2*x^68 + 2*x^71 + 2*x^73 + 2*x^76 + ... MATHEMATICA a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]]; Table[a[n], {n, 1, 110}] (* Vincenzo Librandi, Sep 10 2018 *) PROG (PARI) a(n) = sumdiv(n, d, kronecker(-67, d)) CROSSREFS Cf. A318984. Moebius transform gives A011596. Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), this sequence (d=-67), A318983 (d=-163). Sequence in context: A079208 A262682 A318983 * A069851 A197629 A198255 Adjacent sequences:  A318979 A318980 A318981 * A318983 A318984 A318985 KEYWORD nonn,mult AUTHOR Jianing Song, Sep 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 18:34 EDT 2021. Contains 346273 sequences. (Running on oeis4.)