login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318982
a(n) = Sum_{d|n} Kronecker(-67, d).
5
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0
OFFSET
1,17
COMMENTS
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -67.
Half of the number of integer solutions to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)] counted up to association.
Inverse Moebius transform of A011596.
LINKS
FORMULA
a(n) is multiplicative with a(67^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, a(p^e) = e + 1 if Kronecker(-67, p) = 1.
G.f.: Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k).
A318984(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(67) = 0.383806... . - Amiram Eldar, Dec 16 2023
EXAMPLE
G.f. = x + x^4 + x^9 + x^16 + 2*x^17 + 2*x^19 + 2*x^23 + x^25 + 2*x^29 + x^36 + 2*x^37 + 2*x^47 + x^49 + 2*x^59 + x^64 + x^67 + 2*x^68 + 2*x^71 + 2*x^73 + 2*x^76 + ...
MATHEMATICA
a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]];
Table[a[n], {n, 1, 110}] (* Vincenzo Librandi, Sep 10 2018 *)
PROG
(PARI) a(n) = sumdiv(n, d, kronecker(-67, d))
CROSSREFS
Cf. A318984.
Moebius transform gives A011596.
Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), this sequence (d=-67), A318983 (d=-163).
Sequence in context: A079208 A262682 A318983 * A069851 A197629 A198255
KEYWORD
nonn,easy,mult
AUTHOR
Jianing Song, Sep 06 2018
STATUS
approved