|
|
A318986
|
|
Number of loops of order n that are not groups.
|
|
0
|
|
|
0, 0, 0, 0, 0, 5, 107, 23745, 106228844, 9365022303538, 20890436195945769615, 1478157455158044452849321015
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
A loop is a quasigroup with an identity element. - Muniru A Asiru, Dec 13 2018
|
|
LINKS
|
Table of n, a(n) for n=0..11.
A. Hulpke, Petteri Kaski and Patric R. J. Östergård, The number of Latin squares of order 11, Math. Comp. 80 (2011) 1197-1219.
Brendan D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98-119.
Wikipedia, Quasigroup
Index entries for sequences related to quasigroups
|
|
FORMULA
|
a(n) = A057771(n) - A000001(n).
|
|
CROSSREFS
|
Cf. A057771, A000001.
Sequence in context: A204110 A113056 A336436 * A220549 A210904 A306990
Adjacent sequences: A318983 A318984 A318985 * A318987 A318988 A318989
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Steve Szabo, Sep 06 2018
|
|
EXTENSIONS
|
a(7)-a(11) from Muniru A Asiru, Dec 07 2018
a(0) prepended by Jianing Song, Oct 26 2019
|
|
STATUS
|
approved
|
|
|
|