The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355955 a(n) is the least distance of two nodes on the same grid line in an infinite square lattice of one-ohm resistors for which the resistance measured between the two nodes is greater than n ohms. 5
 1, 5, 107, 2460, 56922, 1317211, 30481165, 705355254, 16322409116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The terms are obtained by a high-precision evaluation of the integral R(j,k) = (1/Pi) * Integral_{beta=0..Pi} (1 - exp(-abs(j)*alphas(beta))*cos(k*beta)) / sinh(alphas(beta)), with alphas(beta) = log(2 - cos(beta) + sqrt(3 + cos(beta)*(cos(beta) - 4))) such that floor(R(m-1,0)) < floor(R(m,0)). The values of m for which this condition is satisfied are the terms of the sequence. See Atkinson and van Steenwijk (1999, page 491, Appendix B) for a Mathematica implementation of the integral. a(9) = 377711852375, found by solving R(x) - 9 = 0, using the asymptotic formula provided by Cserti (2000, page 5), R(x) = (log(x) + gamma + log(8)/2)/Pi, needs independent confirmation. gamma is A001620. LINKS Table of n, a(n) for n=0..8. D. Atkinson and F. J. van Steenwijk, Infinite resistive lattices, Am. J. Phys. 67 (1999), 486-492. (See A211074 for an alternative link.) J. Cserti, Application of the lattice Green's function for calculating the resistance of infinite networks of resistors, arXiv:cond-mat/9909120 [cond-mat.mes-hall], 1999-2000. EXAMPLE a(0) = 1: R(1,0) = 1/2 is the first resistance > 0; a(1) = 5: R(4,0) = 0.953987..., R(5,0) = 1.025804658...; a(2) = 107: R(106,0) = 1.999103258858..., R(107,0) = 2.002092149977722...; a(3) = 2460: R(2459,0) = 2.999894481..., R(2460,0) = 3.0000239019301...; a(4) = 56922: R(56921,0) = 3.99999536602..., R(56922,0) = 4.0000009581... . PROG (PARI) \\ can be used to calculate estimates of terms for n >= 2, using the asymptotic formula. For n <= 8 results identical to those using the exact evaluation of the full integral are produced, but equality for higher terms might not hold, although with extremely remote probability. a355955_asymp(upto) = {my(c=2.2, Rsqasy(L)=(1/Pi)*(log(L)+Euler+log(8)/2), d, m); for (n=2, upto, d=exp(c*n); d=solve(x=0.5*d, 2.5*d, Rsqasy(x)-n); print1(ceil(d), ", "); c=log(d)/n)}; a355955_asymp(8) CROSSREFS Cf. A355565, A355589 (same problem for triangular lattice). Sequence in context: A324230 A142479 A204110 * A113056 A336436 A318986 Adjacent sequences: A355952 A355953 A355954 * A355956 A355957 A355958 KEYWORD nonn,more AUTHOR Hugo Pfoertner, Jul 23 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 18:28 EST 2024. Contains 370283 sequences. (Running on oeis4.)