The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336436 a(0) = 0; a(n) = ((n-1)!)^3 + (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (n-k-1)!)^3 * k * a(k). 1
 0, 1, 5, 107, 6020, 701424, 146665984, 50005133576, 25952660212352, 19469692241358336, 20277424971134267904, 28384315863525074792448, 52002222667299924427689984, 121958564445078246232792363008, 359324017883943122680656621023232 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..14. FORMULA Sum_{n>=0} a(n) * x^n / (n!)^3 = -log(1 - Sum_{n>=1} x^n / n^3). MATHEMATICA a[0] = 0; a[n_] := a[n] = ((n - 1)!)^3 + (1/n) Sum[(Binomial[n, k] (n - k - 1)!)^3 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 14}] nmax = 14; CoefficientList[Series[-Log[1 - Sum[x^k/k^3, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^3 CROSSREFS Cf. A003713, A074708, A193420. Sequence in context: A204110 A355955 A113056 * A318986 A220549 A210904 Adjacent sequences: A336433 A336434 A336435 * A336437 A336438 A336439 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jul 21 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 12:02 EST 2024. Contains 370467 sequences. (Running on oeis4.)