login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Series reversion of g.f. A(x) is -A(-x).
2

%I #13 Nov 10 2018 06:06:03

%S 1,1,1,2,4,8,17,38,87,203,482,1160,2822,6929,17149,42736,107144,

%T 270060,683940,1739511,4441255,11378814,29245927,75386341,194838673,

%U 504802508,1310843123,3411070838,8893590454,23230151872,60780378423,159281034709

%N Series reversion of g.f. A(x) is -A(-x).

%H Vaclav Kotesovec, <a href="/A089796/b089796.txt">Table of n, a(n) for n = 1..550</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.

%F G.f. A(x)=y satisfies (x-x^2-x^3)+y*(-1+3*x-x^3)+y^2*(-1+x^2-x^3)+y^3*(1-x+x^2-x^3)=0.

%F a(n) ~ sqrt((-1 - 3*s + s^3 - 2*r*(-1 + s^2 + s^3) + 3*r^2*(1 + s + s^2 + s^3)) / (1 - 3*s + 3*r*s - r^2*(1 + 3*s) + r^3*(1 + 3*s))) / (2*sqrt(Pi) * n^(3/2) * r^(n-1/2)), where r = 0.3637032853572807454... and s = 0.8232781794881572707... are roots of the system of equations 3*r = 1 + r^3 + 2*(1 - r^2 + r^3)*s + 3*(-1 + r - r^2 + r^3)*s^2, s + s^2 + r*(-1 - 3*s + s^3) + r^3*(1 + s + s^2 + s^3) = s^3 + r^2*(-1 + s^2 + s^3). - _Vaclav Kotesovec_, Mar 10 2014

%t terms = 32; A[_] = 0;

%t Do[A[x_] = (x-x^2-x^3) + (3x-x^3) A[x] + (-1+x^2-x^3) A[x]^2 + (1-x+x^2-x^3) A[x]^3 + O[x]^(terms+1) // Normal, {terms+1}];

%t CoefficientList[A[x]/x, x] (* _Jean-François Alcover_, Nov 10 2018 *)

%o (PARI) a(n)=local(A); if(n<1,0,A=O(x); for(k=1,n,A=(x-x^2-x^3)+A*(3*x-x^3)+A^2*(-1+x^2-x^3)+A^3*(1-x+x^2-x^3)); polcoeff(A,n))

%Y a(n) = A006196(n) if n<28.

%K nonn

%O 1,4

%A _Michael Somos_, Nov 10 2003