login
A294532
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3.
35
1, 2, 6, 12, 23, 42, 73, 124, 207, 342, 562, 918, 1495, 2429, 3941, 6388, 10348, 16756, 27125, 43903, 71052, 114980, 186058, 301065, 487151, 788245, 1275426, 2063702, 3339160, 5402895, 8742089, 14145019, 22887144, 37032200, 59919382, 96951621, 156871043
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values, which, for the sequences in the following guide, are a(0) = 1, a(1) = 2, b(0) = 3:
a(n) = a(n-1) + a(n-2) + b(n-2) A294532
a(n) = a(n-1) + a(n-2) + b(n-2) + 1 A294533
a(n) = a(n-1) + a(n-2) + b(n-2) + 2 A294534
a(n) = a(n-1) + a(n-2) + b(n-2) + 3 A294535
a(n) = a(n-1) + a(n-2) + b(n-2) - 1 A294536
a(n) = a(n-1) + a(n-2) + b(n-2) + n A294537
a(n) = a(n-1) + a(n-2) + b(n-2) + 2n A294538
a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1 A294539
a(n) = a(n-1) + a(n-2) + b(n-2) + 2n - 1 A294540
a(n) = a(n-1) + a(n-2) + b(n-1) A294541
a(n) = a(n-1) + a(n-2) + b(n-1) + 1 A294542
a(n) = a(n-1) + a(n-2) + b(n-1) + 2 A294543
a(n) = a(n-1) + a(n-2) + b(n-1) + 3 A294544
a(n) = a(n-1) + a(n-2) + b(n-1) - 1 A294545
a(n) = a(n-1) + a(n-2) + b(n-1) + n A294546
a(n) = a(n-1) + a(n-2) + b(n-1) + 2n A294547
a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1 A294548
a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1 A294549
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) A294550
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1 A294551
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n A294552
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n A294553
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2 A294554
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3 A294555
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1 A294556
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1 A294557
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2n A294558
a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2) A294559
a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2) A294560
a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2) A294561
a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1 A294562
a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n A294563
a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1 A294564
a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 3 A294565
Conjecture: for every sequence listed here, a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(0) + a(1) + b(0) = 6
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294532 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 03 2017
STATUS
approved