login
A294549
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
3
1, 2, 10, 21, 42, 76, 133, 226, 379, 627, 1030, 1683, 2741, 4454, 7227, 11715, 18978, 30731, 49750, 80524, 130319, 210890, 341258, 552199, 893510, 1445764, 2339331, 3785154, 6124546, 9909763, 16034374, 25944204, 41978647, 67922922, 109901642, 177824639
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 1 = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294549 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A156818 A037422 A136735 * A294550 A296555 A231376
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 04 2017
STATUS
approved