The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296555 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. 4
 1, 2, 10, 21, 42, 76, 133, 227, 380, 629, 1033, 1688, 2749, 4467, 7248, 11749, 19033, 30821, 49895, 80759, 130699, 211505, 342253, 553809, 896115, 1449979, 2346151, 3796189, 6142401, 9938653, 16081119, 26019839, 42101027, 68120937, 110222037, 178343049 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13. EXAMPLE a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(2) + 2 = 10 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...) MATHEMATICA a = 1; a = 2; b = 3; b = 4; b = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}];  (* A296555 *) Table[b[n], {n, 0, 20}] (* complement *) CROSSREFS Cf. A001622, A296245, A296493, A296496. Sequence in context: A136735 A294549 A294550 * A231376 A304700 A318548 Adjacent sequences:  A296552 A296553 A296554 * A296556 A296557 A296558 KEYWORD nonn,easy AUTHOR Clark Kimberling, Dec 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 19:02 EDT 2020. Contains 335473 sequences. (Running on oeis4.)