login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294554 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. 2
1, 2, 12, 25, 50, 90, 157, 266, 444, 733, 1203, 1965, 3199, 5197, 8431, 13665, 22135, 35841, 58019, 93905, 151971, 245925, 397948, 643928, 1041933, 1685920, 2727914, 4413897, 7141876, 11555840, 18697785, 30253696, 48951554, 79205325, 128156956, 207362360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

LINKS

Table of n, a(n) for n=0..35.

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

EXAMPLE

a(0) = 1, a(1) = 2, b(0) = 3, so that

b(1) = 4 (least "new number")

a(2)  = a(1) + a(0) + b(1) + b(0) + 2 = 12

Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, ...)

MATHEMATICA

mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

a[0] = 1; a[1] = 3; b[0] = 2;

a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2;

b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

Table[a[n], {n, 0, 40}]  (* A294554 *)

Table[b[n], {n, 0, 10}]

CROSSREFS

Cf. A001622, A294532.

Sequence in context: A092825 A135396 A031048 * A098707 A152811 A294552

Adjacent sequences:  A294551 A294552 A294553 * A294555 A294556 A294557

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Nov 15 2017

EXTENSIONS

Definition corrected by Georg Fischer, Sep 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 21:48 EDT 2022. Contains 355029 sequences. (Running on oeis4.)