login
A294554
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 2, 12, 25, 50, 90, 157, 266, 444, 733, 1203, 1965, 3199, 5197, 8431, 13665, 22135, 35841, 58019, 93905, 151971, 245925, 397948, 643928, 1041933, 1685920, 2727914, 4413897, 7141876, 11555840, 18697785, 30253696, 48951554, 79205325, 128156956, 207362360
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + 2 = 12
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294554 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A092825 A135396 A031048 * A098707 A152811 A294552
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 15 2017
EXTENSIONS
Definition corrected by Georg Fischer, Sep 27 2020
STATUS
approved