login
A294565
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 2, 6, 12, 25, 44, 77, 130, 217, 360, 590, 964, 1569, 2549, 4135, 6702, 10856, 17578, 28455, 46055, 74533, 120614, 195173, 315814, 511015, 826858, 1337903, 2164792, 3502727, 5667552, 9170313, 14837900, 24008249, 38846186, 62854473, 101700698, 164555211
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + 2*b(1) - b(0) - 2 = 6
Complement: (b(n)) = (3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] - b[n - 2] - 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294565 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A034882 A175943 A228816 * A210068 A210633 A304710
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 15 2017
STATUS
approved