login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294558 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. 4
1, 2, 14, 31, 64, 118, 209, 358, 602, 999, 1644, 2690, 4386, 7133, 11580, 18778, 30427, 49278, 79782, 129141, 209008, 338238, 547339, 885674, 1433114, 2318893, 3752116, 6071122, 9823356, 15894601, 25718084, 41612816, 67331035, 108943990, 176275168, 285219305 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2*n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A294558 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A075490 A031301 A335200 * A202638 A226565 A231050
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 16 2017
EXTENSIONS
Definition corrected by Georg Fischer, Sep 27 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 21:15 EDT 2024. Contains 374377 sequences. (Running on oeis4.)