login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202638 y-values in the solution to x^2 - 7*y^2 = -3. 2
1, 2, 14, 31, 223, 494, 3554, 7873, 56641, 125474, 902702, 1999711, 14386591, 31869902, 229282754, 507918721, 3654137473, 8094829634, 58236916814, 129009355423, 928136531551, 2056054857134, 14791947588002, 32767868358721 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The corresponding values of x of this Pell equation are in A202637.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

R. A. Mollin, Class Numbers of Quadratic Fields Determinet by Solvability of Diophantine Equations, Mathematics of Computation Vol. 48, 1987, p. 235 (Theorem 1.1, particular case).

Index entries for linear recurrences with constant coefficients, signature (0,16,0,-1).

FORMULA

G.f.: x*(1-x)*(1+3*x+x^2)/(1-16*x^2+x^4).

a(n) = a(-n+1) = ((7+2*sqrt(7)*(-1)^n)*(8-3*sqrt(7))^floor(n/2)+(7-2*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^floor(n/2))/14.

a(2n)+a(2n-1) = A202637(2n)-A202637(2n-1).

MATHEMATICA

LinearRecurrence[{0, 16, 0, -1}, {1, 2, 14, 31}, 24]

PROG

(PARI) a=vector(24); a[1]=1; a[2]=2; a[3]=14; a[4]=31; for(i=5, #a, a[i]=16*a[i-2]-a[i-4]); a

(MAGMA) m:=24; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1+3*x+x^2)/(1-16*x^2+x^4)));

(Maxima) makelist(expand(((7+2*sqrt(7)*(-1)^n)*(8-3*sqrt(7))^floor(n/2)+(7-2*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^floor(n/2))/14), n, 1, 24);

CROSSREFS

Sequence in context: A075490 A031301 A294558 * A226565 A231050 A322074

Adjacent sequences:  A202635 A202636 A202637 * A202639 A202640 A202641

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Dec 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 14:27 EST 2019. Contains 329896 sequences. (Running on oeis4.)