login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202637 x-values in the solution to x^2 - 7*y^2 = -3. 2
2, 5, 37, 82, 590, 1307, 9403, 20830, 149858, 331973, 2388325, 5290738, 38063342, 84319835, 606625147, 1343826622, 9667939010, 21416906117, 154080399013, 341326671250, 2455618445198, 5439809833883, 39135814724155, 86695630670878 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The corresponding values of y of this Pell equation are in A202638.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

R. A. Mollin, Class Numbers of Quadratic Fields Determinet by Solvability of Diophantine Equations, Mathematics of Computation Vol. 48, 1987, p. 235 (Theorem 1.1, particular case).

Index entries for linear recurrences with constant coefficients, signature (0,16,0,-1).

FORMULA

G.f.: x*(1+x)*(2+3*x+2*x^2)/(1-16*x^2+x^4).

a(n) = -a(-n+1) = ((-2*(-1)^n+sqrt(7))*(8+3*sqrt(7))^floor(n/2)-(2*(-1)^n+sqrt(7))*(8-3*sqrt(7))^floor(n/2))/2.

a(2n)-a(2n-1) = A202638(2n)+A202638(2n-1).

MATHEMATICA

LinearRecurrence[{0, 16, 0, -1}, {2, 5, 37, 82}, 24]

PROG

(PARI) a=vector(24); a[1]=2; a[2]=5; a[3]=37; a[4]=82; for(i=5, #a, a[i]=16*a[i-2]-a[i-4]); a

(MAGMA) m:=24; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)*(2+3*x+2*x^2)/(1-16*x^2+x^4)));

(Maxima) makelist(expand(((-2*(-1)^n+sqrt(7))*(8+3*sqrt(7))^floor(n/2)-(2*(-1)^n+sqrt(7))*(8-3*sqrt(7))^floor(n/2))/2), n, 1, 24);

CROSSREFS

Sequence in context: A106129 A163499 A086218 * A138658 A067464 A081545

Adjacent sequences:  A202634 A202635 A202636 * A202638 A202639 A202640

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Dec 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 21:43 EDT 2022. Contains 353929 sequences. (Running on oeis4.)