login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067464
Primes p such that sigma(p-1)+sigma(p+1) is prime.
2
2, 5, 37, 101, 257, 401, 4801, 12101, 22501, 25537, 25601, 31249, 33857, 160001, 217157, 401957, 404497, 476101, 512657, 583697, 1020101, 1270417, 1322501, 1503377, 1674437, 1943237, 2005057, 2016401, 2056357, 2689601, 2755601, 2842597, 3686401, 3920401
OFFSET
1,1
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 150 terms from Hagen v. Eitzen)
EXAMPLE
401 is here as 401 is prime and sigma(401 - 1) + sigma(401 + 1) = 961 + 816 = 1777 which is prime. - David A. Corneth, Feb 17 2021
MATHEMATICA
Select[Prime[Range[300000]], PrimeQ[DivisorSigma[1, #-1]+DivisorSigma[ 1, #+1]]&] (* Harvey P. Dale, Jul 13 2018 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(sigma(p-1)+sigma(p+1)); \\ Michel Marcus, Feb 17 2021
(PARI) upto(n) = {my(res = List()); for(i = 1, sqrtint(n + 1), if(isprime(2*i^2 - 1) && isprime(sigma(2*i^2-2) + sigma(2*i^2)) && 2*i^2 - 1 <= n, listput(res, 2*i^2 - 1); ); if(isprime(i^2 + 1) && isprime(sigma(i^2) + sigma(i^2 + 2)), listput(res, i^2 + 1); ) ); Set(res) } \\ David A. Corneth, Feb 17 2021
CROSSREFS
Cf. A028982.
Sequence in context: A086218 A202637 A138658 * A081545 A274074 A097496
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 23 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 18 2002
STATUS
approved