OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..400
FORMULA
a(n) = Sum_{k=0..n} A265758(k)*Stirling2(n,k)*k!.
a(n) ~ c * 2 * (3^(2/3) + 2) * n! / (3*(3^(2/3) - 2) * (3^(1/3) - 1) * log(1 + 3^(-1/3))^(n+1)), where c = Product_{k>=4} (1 + k/3^(k/3)) / (1 - k/3^(k/3)) = 153073.83255100475812062139772279157814388739...
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1+k*(Exp[x]-1)^k)/(1-k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 31 2019
STATUS
approved