OFFSET
1,1
COMMENTS
For the first of the corresponding four consecutive positive integers, see A157088.
LINKS
Colin Barker, Table of n, a(n) for n = 1..873
Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
FORMULA
a(n) = 15*a(n-1)-15*a(n-2)+a(n-3) for n>3.
G.f.: -x*(x^2-14*x+25) / ((x-1)*(x^2-14*x+1)).
a(n) = (-2-(7-4*sqrt(3))^n*(-2+sqrt(3))+(2+sqrt(3))*(7+4*sqrt(3))^n)/2. - Colin Barker, Mar 05 2016
EXAMPLE
25 is in the sequence because 25^2 + 26^2 + 27^2 = 2030 = 21^2 + 22^2 + 23^2 + 24^2.
PROG
(PARI) Vec(-x*(x^2-14*x+25)/((x-1)*(x^2-14*x+1)) + O(x^40))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 07 2015
STATUS
approved