login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261969
Product of primes dividing n with maximum multiplicity.
4
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 2, 13, 14, 15, 2, 17, 3, 19, 2, 21, 22, 23, 2, 5, 26, 3, 2, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 2, 41, 42, 43, 2, 3, 46, 47, 2, 7, 5, 51, 2, 53, 3, 55, 2, 57, 58, 59, 2, 61, 62, 3, 2, 65, 66, 67, 2, 69, 70, 71, 2, 73, 74, 5, 2, 77, 78, 79, 2, 3, 82, 83, 2, 85, 86, 87, 2, 89, 3, 91
OFFSET
1,2
COMMENTS
a(1) = 1 by convention.
If n is prime then a(n) = n; e.g., a(2) = 2, a(3) = 3, a(5) = 5, etc. Also if n is nonsquare semiprime then a(n) = n; e.g., a(6) = 6, a(10) = 10, a(14) = 14, a(15) = 15, etc. - Zak Seidov, Sep 07 2015
a(n)= n precisely when n is squarefree. - Franklin T. Adams-Watters, Feb 16 2019
LINKS
EXAMPLE
18 = 2^1 * 3^2. 2 is the maximum exponent, 3 is the only prime with that exponent, so a(18) = 3.
36 = 2^2 * 3^2, maximum exponent 2 for both 2 and 3, so a(36) = 2*3 = 6.
MAPLE
a:= n-> (l->(m->mul(`if`(m=j[2], j[1], 1), j=l))(
max(seq(i[2], i=l))))(ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Sep 07 2015
MATHEMATICA
f[n_] := Block[{pf = FactorInteger@ n}, Times @@ Take[First /@ pf, Flatten@ Position[Last /@ pf, Max[Last /@ pf]]]]; f /@ Range@ 91 (* Michael De Vlieger, Sep 07 2015 *)
PROG
(PARI) a(n) = my(fm=factor(n), m); if(n<2, return(n)); m=vecmax(fm[, 2]~); prod(k=1, #fm[, 2]~, if(fm[k, 2]==m, fm[k, 1], 1))
(PARI) a(n) = {my(f = factor(n)); if (n>1, m = vecmax(f[, 2])); for (i=1, #f~, f[i, 2] = (f[i, 2]==m)); factorback(f); } \\ Michel Marcus, Sep 08 2015
(Haskell)
a261969 n = product $ map fst $ filter ((== emax) . snd) $ zip ps es
where emax = maximum es
ps = a027748_row n; es = a124010_row n
-- Reinhard Zumkeller, Sep 08 2015
CROSSREFS
Cf. A007947.
Cf. A000040, A001358. - Zak Seidov, Sep 07 2015
Sequence in context: A162323 A165743 A086297 * A281495 A056554 A346486
KEYWORD
nonn
AUTHOR
STATUS
approved