login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261967
{2,3,5}-primes. (See comments.)
0
2, 151, 3061, 9517861, 11903341, 15344551, 15460771, 19975771, 37935091, 42234271, 52312411, 199938421, 228523501, 237049321, 270798991, 315266641, 315522931, 327445201, 354600601, 423223741, 466801171, 498309631, 499063711, 547916791, 585381361, 621504721
OFFSET
1,1
COMMENTS
Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for i = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k and j = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)). Note that strong (2,3,5)-primes (A262727) form a proper subset of {2,3,5}-primes. It may be of interest to consider the sets of {2,3,5,7}-primes, {2,3,5,7,11}-primes, etc. Is every such set infinite?
MATHEMATICA
{b1, b2, b3} = {2, 3, 5}; z = 10000000;
Select[Prime[Range[z]],
PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b3], b1]] &&
PrimeQ[FromDigits[IntegerDigits[#, b3], b2]] &]
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 09 2015
STATUS
approved