login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A165743
The greatest common divisor of n and 210.
1
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 1, 6, 1, 14, 15, 2, 1, 6, 1, 10, 21, 2, 1, 6, 5, 2, 3, 14, 1, 30, 1, 2, 3, 2, 35, 6, 1, 2, 3, 10, 1, 42, 1, 2, 15, 2, 1, 6, 7, 10, 3, 2, 1, 6, 5, 14, 3, 2, 1, 30, 1, 2, 21, 2, 5, 6, 1, 2, 3, 70, 1, 6, 1, 2, 15, 2, 7, 6, 1, 10, 3, 2, 1, 42, 5, 2, 3, 2, 1, 30, 7, 2, 3, 2, 5, 6
OFFSET
1,2
COMMENTS
Note: 210 = 2*3*5*7, the product of the first four primes.
gcd(n,2*3) is A089128; gcd(n,2*3*5) not currently in the OEIS. - R. J. Mathar, Feb 07 2011
FORMULA
From Amiram Eldar, Sep 16 2023: (Start)
a(n) = gcd(n, 210).
Multiplicative with a(p^e) = p if p <= 7, and 1 otherwise.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 2/3^s) * (1 + 4/5^s) * (1 + 6/7^s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 117/14. (End)
MAPLE
seq(gcd(n, 210), n = 1 .. 100); # Emeric Deutsch, Oct 31 2009
MATHEMATICA
a[n_] := GCD[n, 210]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
PROG
(PARI) a(n) = gcd(n, 210); \\ Amiram Eldar, Sep 16 2023
CROSSREFS
Cf. A089128.
Sequence in context: A053590 A208644 A162323 * A086297 A261969 A281495
KEYWORD
nonn,easy,mult
AUTHOR
Mick Purcell (mickpurcell(AT)gmail.com), Sep 26 2009
EXTENSIONS
Extended by Emeric Deutsch, Oct 31 2009
STATUS
approved