login
A165745
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
0
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1533, 3060, 6111, 12204, 24372, 48672, 97200, 194112, 387648, 774144, 1545990, 3087393, 6165624, 12312951, 24589362, 49105752, 98065776, 195840528, 391099872, 781039104, 1559760372, 3114891948
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f. (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t
+ 1)/(t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2 - t + 1)
CROSSREFS
Sequence in context: A344040 A165183 A046944 * A166327 A166467 A166857
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved