The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045622 Convolution of A000108 (Catalan numbers) with A045543. 2
 1, 25, 362, 3973, 36646, 299530, 2238676, 15613741, 103054094, 650194974, 3950996556, 23257207714, 133217073276, 745218012084, 4083224828328, 21966983072637, 116268166691358, 606474982072982, 3122157367765788 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also convolution of A045530 with A000984 (central binomial coefficients); also convolution of A045505 with A000302 (powers of 4). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(n) = binomial(n+6, 5)*(4^(n+1) - A000984(n+6)/A000984(5))/2, A000984(n) = binomial(2*n, n). G.f.: x*c(x)/(1-4*x)^6, where c(x) = g.f. for Catalan numbers. MAPLE seq(coeff(series((1-sqrt(1-4*x))/(2*(1-4*x)^6), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^6), {n, 0, 40}], x] (* G. C. Greubel, Jan 13 2020 *) PROG (PARI) my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))/(2*(1-4*x)^6)) \\ G. C. Greubel, Jan 13 2020 (MAGMA) R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))/(2*(1-4*x)^6) )); // G. C. Greubel, Jan 13 2020 (Sage) def A045622_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( (1-sqrt(1-4*x))/(2*(1-4*x)^6) ).list() A045622_list(40) # G. C. Greubel, Jan 13 2020 CROSSREFS Sequence in context: A261972 A197678 A197536 * A130052 A059255 A227024 Adjacent sequences:  A045619 A045620 A045621 * A045623 A045624 A045625 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:59 EDT 2022. Contains 354092 sequences. (Running on oeis4.)