login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045622
Convolution of A000108 (Catalan numbers) with A045543.
2
1, 25, 362, 3973, 36646, 299530, 2238676, 15613741, 103054094, 650194974, 3950996556, 23257207714, 133217073276, 745218012084, 4083224828328, 21966983072637, 116268166691358, 606474982072982, 3122157367765788
OFFSET
1,2
COMMENTS
Also convolution of A045530 with A000984 (central binomial coefficients); also convolution of A045505 with A000302 (powers of 4).
LINKS
FORMULA
a(n) = binomial(n+6, 5)*(4^(n+1) - A000984(n+6)/A000984(5))/2, A000984(n) = binomial(2*n, n).
G.f.: x*c(x)/(1-4*x)^6, where c(x) = g.f. for Catalan numbers.
MAPLE
seq(coeff(series((1-sqrt(1-4*x))/(2*(1-4*x)^6), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^6), {n, 0, 40}], x] (* G. C. Greubel, Jan 13 2020 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))/(2*(1-4*x)^6)) \\ G. C. Greubel, Jan 13 2020
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))/(2*(1-4*x)^6) )); // G. C. Greubel, Jan 13 2020
(Sage)
def A045622_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-sqrt(1-4*x))/(2*(1-4*x)^6) ).list()
A045622_list(40) # G. C. Greubel, Jan 13 2020
CROSSREFS
Sequence in context: A261972 A197678 A197536 * A130052 A059255 A227024
KEYWORD
easy,nonn
STATUS
approved