OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Index entries for linear recurrences with constant coefficients, signature (17,-102,272,-272).
FORMULA
G.f.: x*(1 -6*x +16*x^2 -16*x^3)/(1 -17*x +102*x^2 -272*x^3 +272*x^4) = g1(5, x)/(1-g1(5, x)), g1(5, x) := x*(1-6*x+16*x^2-16*x^3)/(1-4*x)^4 (G.f. first column of A030526).
MAPLE
seq(coeff(series(x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4), x, n+1), x, n), n = 1..40); # G. C. Greubel, Jan 13 2020
MATHEMATICA
Rest@CoefficientList[Series[x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4), {x, 0, 40}], x] (* G. C. Greubel, Jan 13 2020 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4)) \\ G. C. Greubel, Jan 13 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4) )); // G. C. Greubel, Jan 13 2020
(Sage)
def A045624_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4) ).list()
a=A045624_list(40); a[1:] # G. C. Greubel, Jan 13 2020
(GAP) a:=[1, 11, 101, 851];; for n in [5..40] do a[n]:=17*a[n-1]-102*a[n-2] +272*a[n-3]-272*a[n-4]; od; a; # G. C. Greubel, Jan 13 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved