login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030526
A convolution triangle of numbers obtained from A036070.
4
1, 10, 1, 80, 20, 1, 560, 260, 30, 1, 3584, 2720, 540, 40, 1, 21504, 24768, 7480, 920, 50, 1, 122880, 204288, 87552, 15840, 1400, 60, 1, 675840, 1562880, 908352, 225936, 28800, 1980, 70, 1, 3604480, 11264000, 8595200, 2813696, 483920, 47360, 2660, 80
OFFSET
1,2
COMMENTS
a(n,m) := s1p(5; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle). Signed version: (-1)^(n-m)*a(n,m) := s1(5; n,m).
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = 4*(4*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1. G.f. for m-th column: (x*(1-6*x+16*x^2-16*x^3)/(1-4*x)^4)^m.
EXAMPLE
1;
10,1;
80,20,1;
560,260,30,1;
3584,2720,540,40,1;
...
CROSSREFS
a(n, 1)= A036070(n-1). Row sums = A045624(n).
Sequence in context: A009209 A009227 A305996 * A327003 A206819 A178865
KEYWORD
easy,nonn,tabl
STATUS
approved