login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261975
Expansion of elliptic_E / elliptic_K in powers of q.
7
1, -8, 48, -224, 864, -2928, 9024, -25792, 69312, -176936, 432288, -1016736, 2312832, -5107504, 10983552, -23060544, 47373696, -95401872, 188637936, -366744160, 701930304, -1324016896, 2463662016, -4526174784, 8216376576, -14747939768, 26191413024, -46048199360
OFFSET
0,2
LINKS
FORMULA
G.f.: (T4^4 * T3 + 4*q * d/dq T3) / T3^5 where T3 = theta_3(q) and T4 = theta_4(q).
MATHEMATICA
nmax = 30; dtheta = D[Normal[Series[EllipticTheta[3, 0, x], {x, 0, nmax}]], x]; CoefficientList[Series[(EllipticTheta[4, 0, x]^4*EllipticTheta[3, 0, x] + 4*x*dtheta)/EllipticTheta[3, 0, x]^5, {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2018 *)
CROSSREFS
Cf. A004018 (elliptic K(q)), A194094 (elliptic E(q)), A115977 (elliptic k(q)^2).
Cf. A261975 (E/K), A261977 ((E/K)^(1/2)), A261978 ((E/K)^(1/4)).
Cf. A261976 (K/E), A261979 ((K/E)^(1/2)), A261980 ((K/E)^(1/4)).
Sequence in context: A128796 A093199 A263507 * A087914 A271061 A211012
KEYWORD
sign
AUTHOR
Joerg Arndt, Sep 07 2015
STATUS
approved