login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093199
Number of 4 X 4 magic squares with line sum n.
3
1, 8, 48, 200, 675, 1904, 4736, 10608, 21925, 42328, 77328, 134680, 225351, 364000, 570368, 869856, 1295433, 1888296, 2700400, 3795176, 5250795, 7160912, 9638784, 12818000, 16857581, 21942648, 28290640, 36151864
OFFSET
0,2
COMMENTS
A magic square is defined here as a square matrix whose entries are nonnegative integers and whose rows, columns and main diagonals add up to the same number.
LINKS
M. M. Ahmed, Algebraic Combinatorics of Magic Squares, arXiv:math/0405476 [math.CO], 2004.
M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.
Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, Discrete and Computational Geometry, Volume 25, 2003, pp. 25-41.
Matthias Beck, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.
V. Baldoni et al., A User's Guide for LattE integrale. Section 5.1 Counting Magic Squares.
FORMULA
G.f.: (x^8+4x^7+18x^6+36x^5+50x^4+36x^3+18x^2+4x+1)/(1-x)^4/(1-x^2)^4 [Ahmed]. - sent by R. J. Mathar, Jan 25 2007
a(n) = 4*a(n-1) - 2*a(n-2) - 12*a(n-3) + 17*a(n-4) + 8*a(n-5) - 28*a(n-6) + 8*a(n-7) + 17*a(n-8) - 12*a(n-9) - 2*a(n-10) + 4*a(n-11) - a(n-12) for n > 11. - Chai Wah Wu, Jan 15 2019
MATHEMATICA
a[n_] := (1/960)(n + 2)(2 n^6 + 24 n^5 + 130 n^4 + 400 n^3 + 5 (-1)^n n^2 + 763 n^2 + 20 (-1)^n n + 876 n + 45 (-1)^n + 435);
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jan 18 2019 *)
PROG
(PARI) a(n)=if(n%2==0, 1/480*n^7+7/240*n^6+89/480*n^5+11/16*n^4+49/30*n^3+38/15*n^2+71/30*n+1, 1/480*n^7+7/240*n^6+89/480*n^5+11/16*n^4+779/480*n^3+593/240*n^2+1051/480*n+13/16)
CROSSREFS
Sequence in context: A247727 A187174 A128796 * A263507 A261975 A087914
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Apr 22 2004
STATUS
approved