Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Aug 27 2024 01:29:21
%S 1,8,48,200,675,1904,4736,10608,21925,42328,77328,134680,225351,
%T 364000,570368,869856,1295433,1888296,2700400,3795176,5250795,7160912,
%U 9638784,12818000,16857581,21942648,28290640,36151864
%N Number of 4 X 4 magic squares with line sum n.
%C A magic square is defined here as a square matrix whose entries are nonnegative integers and whose rows, columns and main diagonals add up to the same number.
%H M. M. Ahmed, <a href="https://arxiv.org/abs/math/0405476">Algebraic Combinatorics of Magic Squares</a>, arXiv:math/0405476 [math.CO], 2004.
%H M. Ahmed, J. De Loera and R. Hemmecke, <a href="http://arxiv.org/abs/math/0201108">Polyhedral Cones of Magic Cubes and Squares</a>, arXiv:math/0201108 [math.CO], 2002.
%H Maya Ahmed, Jesús De Loera and Raymond Hemmecke, <a href="https://doi.org/10.1007/978-3-642-55566-4_2">Polyhedral cones of magic cubes and squares</a>, Discrete and Computational Geometry, Volume 25, 2003, pp. 25-41.
%H Matthias Beck, <a href="https://arxiv.org/abs/math/0201013">The number of "magic" squares and hypercubes</a>, arXiv:math/0201013 [math.CO], 2002-2005.
%H V. Baldoni et al., <a href="https://www.math.ucdavis.edu/~latte/software.php">A User's Guide for LattE integrale</a>. Section 5.1 Counting Magic Squares.
%F G.f.: (x^8+4x^7+18x^6+36x^5+50x^4+36x^3+18x^2+4x+1)/(1-x)^4/(1-x^2)^4 [Ahmed]. - sent by _R. J. Mathar_, Jan 25 2007
%F a(n) = 4*a(n-1) - 2*a(n-2) - 12*a(n-3) + 17*a(n-4) + 8*a(n-5) - 28*a(n-6) + 8*a(n-7) + 17*a(n-8) - 12*a(n-9) - 2*a(n-10) + 4*a(n-11) - a(n-12) for n > 11. - _Chai Wah Wu_, Jan 15 2019
%t a[n_] := (1/960)(n + 2)(2 n^6 + 24 n^5 + 130 n^4 + 400 n^3 + 5 (-1)^n n^2 + 763 n^2 + 20 (-1)^n n + 876 n + 45 (-1)^n + 435);
%t Table[a[n], {n, 0, 27}] (* _Jean-François Alcover_, Jan 18 2019 *)
%o (PARI) a(n)=if(n%2==0,1/480*n^7+7/240*n^6+89/480*n^5+11/16*n^4+49/30*n^3+38/15*n^2+71/30*n+1,1/480*n^7+7/240*n^6+89/480*n^5+11/16*n^4+779/480*n^3+593/240*n^2+1051/480*n+13/16)
%K nonn,easy
%O 0,2
%A _Ralf Stephan_, Apr 22 2004