login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of elliptic_E / elliptic_K in powers of q.
7

%I #11 Apr 10 2018 11:23:32

%S 1,-8,48,-224,864,-2928,9024,-25792,69312,-176936,432288,-1016736,

%T 2312832,-5107504,10983552,-23060544,47373696,-95401872,188637936,

%U -366744160,701930304,-1324016896,2463662016,-4526174784,8216376576,-14747939768,26191413024,-46048199360

%N Expansion of elliptic_E / elliptic_K in powers of q.

%H Vaclav Kotesovec, <a href="/A261975/b261975.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: (T4^4 * T3 + 4*q * d/dq T3) / T3^5 where T3 = theta_3(q) and T4 = theta_4(q).

%t nmax = 30; dtheta = D[Normal[Series[EllipticTheta[3, 0, x], {x, 0, nmax}]], x]; CoefficientList[Series[(EllipticTheta[4, 0, x]^4*EllipticTheta[3, 0, x] + 4*x*dtheta)/EllipticTheta[3, 0, x]^5, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 10 2018 *)

%Y Cf. A004018 (elliptic K(q)), A194094 (elliptic E(q)), A115977 (elliptic k(q)^2).

%Y Cf. A261975 (E/K), A261977 ((E/K)^(1/2)), A261978 ((E/K)^(1/4)).

%Y Cf. A261976 (K/E), A261979 ((K/E)^(1/2)), A261980 ((K/E)^(1/4)).

%K sign

%O 0,2

%A _Joerg Arndt_, Sep 07 2015