login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147592
Expansion of 1/(1 + x - x^2 - 3*x^3 - x^4 + x^5 + x^6).
1
1, -1, 2, 0, 0, 4, -2, 5, 3, 0, 12, 0, 12, 16, 5, 35, 18, 36, 64, 40, 110, 105, 135, 240, 216, 384, 472, 560, 905, 999, 1458, 1960, 2368, 3500, 4302, 5805, 7947, 9936, 13860, 17920, 23588, 32096, 41229, 55755, 73570, 96460, 129920, 169680, 226206, 300369
OFFSET
0,3
FORMULA
G.f.: -1/(x^3*f(x)*f(1/x)), where f(x) = -1 - x + x^3.
G.f.: 1/((1+x-x^3)*(1-x^2-x^3)). - Colin Barker, Nov 04 2012
MATHEMATICA
f[x_]= x^3-x-1; CoefficientList[Series[-1/(x^3*f[x]*f[1/x]), {x, 0, 60}], x]
LinearRecurrence[{-1, 1, 3, 1, -1, -1}, {1, -1, 2, 0, 0, 4}, 60] (* Harvey P. Dale, Sep 23 2020 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1+x-x^3)*(1-x^2-x^3)) )); // G. C. Greubel, Oct 25 2022
(SageMath)
def A147592_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1+x-x^3)*(1-x^2-x^3)) ).list()
A147592_list(60) # G. C. Greubel, Oct 25 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Nov 08 2008
EXTENSIONS
Edited by Joerg Arndt and Colin Barker, Nov 04 2012
STATUS
approved