login
A212137
Triangular array: T(n,k) is the number of k-element subsets of {1,...,n} whose average is not an integer.
1
0, 0, 1, 0, 2, 0, 0, 4, 2, 1, 0, 6, 6, 4, 0, 0, 9, 12, 11, 4, 1, 0, 12, 22, 26, 16, 6, 0, 0, 16, 36, 52, 44, 24, 6, 1, 0, 20, 54, 94, 100, 70, 30, 8, 0, 0, 25, 78, 156, 200, 176, 102, 39, 8, 1, 0, 30, 108, 246, 368, 386, 282, 144, 48, 10, 0, 0, 36, 144, 369, 632, 772, 678, 431, 194, 60, 10, 1
OFFSET
1,5
COMMENTS
Alternating row sums: -1,-2,-3,-4,-5,-6,...
Let S(n,k) be the number in row n and column k of the array A061865; then S(n,k)+T(n,k)=C(n,k), for 1<=k<=n, n>=1.
LINKS
EXAMPLE
First 7 rows:
0
0...1
0...2....0
0...4....2....1
0...6....6....4....0
0...9....12...11...4....1
0...12...22...26...16...6...0
MATHEMATICA
t[n_, k_] := t[n, k] =
Count[Map[IntegerQ[Mean[#]] &, Subsets[Range[n], {k}]], False]
Flatten[Table[t[n, k], {n, 1, 12}, {k, 1, n}]]
TableForm[Table[t[n, k], {n, 1, 12}, {k, 1, n}]]
s[n_] := Sum[t[n, k], {k, 1, n}]
(* Peter J. C. Moses, May 01 2012 *)
CROSSREFS
Cf. A061865.
Sequence in context: A121552 A350785 A158118 * A346462 A230295 A147592
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 06 2012
STATUS
approved