The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061865 Triangle in which the k-th item in the n-th row (both starting from 1) is the number of ways in which we can add k distinct integers from 1 to n, in such a way that the sum is divisible by k. 7
 1, 2, 0, 3, 1, 1, 4, 2, 2, 0, 5, 4, 4, 1, 1, 6, 6, 8, 4, 2, 0, 7, 9, 13, 9, 5, 1, 1, 8, 12, 20, 18, 12, 4, 2, 0, 9, 16, 30, 32, 26, 14, 6, 1, 1, 10, 20, 42, 54, 52, 34, 18, 6, 2, 0, 11, 25, 57, 84, 94, 76, 48, 21, 7, 1, 1, 12, 30, 76, 126, 160, 152, 114, 64, 26, 6, 2, 0, 13, 36, 98, 181, 259, 284, 246, 163, 81, 28, 8, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS T(n,k) is the number of k-element subsets of {1,...,n} whose mean is an integer.  Row sums and alternating row sums: A051293 and A000027. - Clark Kimberling, May 05 2012 [first link corrected to A051293 by Antti Karttunen, Feb 18 2013] LINKS Alois P. Heinz, Rows n = 1..150, flattened FORMULA T(n,k) = C(n,k) - Sum[a_1=1..(n-k+1)] Sum[a_2=(a_1+1..(n-k+2) ... Sum[a_k=a_(k-1)+1..n] (ceiling(f(a_1,...a_k)) - floor(f(a_1,...a_k))). This sequence f(a_1,...a_k) = (a_1+...+a_k)/k arithmetic mean. - Ctibor O. Zizka, Jun 03 2015 EXAMPLE The third term of the sixth row is 8 because we have solutions {1+2+3, 1+2+6, 1+3+5, 1+5+6, 2+3+4, 2+4+6, 3+4+5, 4+5+6} which all are divisible by 3. From Clark Kimberling, May 05 2012: (Start) First six rows:   1;   2, 0;   3, 1, 1;   4, 2, 2, 0;   5, 4, 4, 1, 1;   6, 6, 8, 4, 2, 0; (End) MAPLE [seq(DivSumChooseTriangle(j), j=1..120)]; DivSumChooseTriangle := (n) -> nops(DivSumChoose(trinv(n-1), (n-((trinv(n-1)*(trinv(n-1)-1))/2)))); DIVSum_SOLUTIONS_GLOBAL := []; DivSumChoose := proc(n, k) global DIVSum_SOLUTIONS_GLOBAL; DIVSum_SOLUTIONS_GLOBAL := []; DivSumChooseSearch([], n, k); RETURN(DIVSum_SOLUTIONS_GLOBAL); end; DivSumChooseSearch := proc(s, n, k) global DIVSum_SOLUTIONS_GLOBAL; local i, p; p := nops(s); if(p = k) then if(0 = (convert(s, `+`) mod k)) then DIVSum_SOLUTIONS_GLOBAL := [op(DIVSum_SOLUTIONS_GLOBAL), s]; fi; else for i from lmax(s)+1 to n-(k-p)+1 do DivSumChooseSearch([op(s), i], n, k); od; fi; end; lmax := proc(a) local e, z; z := 0; for e in a do if whattype(e) = list then e := last_term(e); fi; if e > z then z := e; fi; od; RETURN(z); end; # second Maple program: b:= proc(n, s, m, t) option remember; `if`(n=0, `if`(s=0 and t=0, 1, 0),       `if`(t=0, 0, b(n-1, irem(s+n, m), m, t-1))+b(n-1, s, m, t))     end: T:= (n, k)-> b(n, 0, k\$2): seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 28 2018 MATHEMATICA t[n_, k_] := Length[ Select[ Subsets[ Range[n], {k}], Mod[Total[#], k] == 0 & ]]; Flatten[ Table[ t[n, k], {n, 1, 13}, {k, 1, n}]] (* Jean-François Alcover, Dec 02 2011 *) CROSSREFS The second diagonal is given by C(((n+(n mod 2))/2), 2)+C(((n-(n mod 2))/2), 2) = A002620, the third diagonal by A061866. Cf. A061857. T(2n,n) gives A169888. Sequence in context: A047983 A070812 A308230 * A135818 A078804 A071465 Adjacent sequences:  A061862 A061863 A061864 * A061866 A061867 A061868 KEYWORD nonn,tabl AUTHOR Antti Karttunen, May 11 2001 EXTENSIONS Starting offset corrected from 0 to 1 by Antti Karttunen, Feb 18 2013. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 17:12 EST 2021. Contains 349424 sequences. (Running on oeis4.)