login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167604
A variant of Euclid-Mullin (A000945): a(1)=2, a(n+1) is the least prime dividing [Product_{i in I} a(i) + Product_{i not in I} a(i)], minimized over all subsets I of {1..n}.
4
2, 3, 5, 11, 37, 13, 7, 29, 17, 19, 43, 23, 47, 41, 53, 31, 61, 59, 67, 79, 83, 73, 97, 71, 101, 89, 103, 127, 107, 113, 137, 131, 139, 109, 149, 151, 163, 157, 167, 173, 193, 211, 179, 191, 181, 223, 199, 197, 233, 227, 229, 239, 241, 251, 257, 307, 281, 269, 271, 293
OFFSET
1,1
COMMENTS
By Euclid's argument, the a(i) are distinct.
One can ask whether all primes occur in this sequence.
LINKS
Andrew R. Booker, A variant of the Euclid-Mullin sequence containing every prime, arXiv preprint arXiv:1605.08929 [math.NT], 2016.
FORMULA
For any n, we have Legendre symbol (-a(1)*a(2)*...*a(n-1) / a(n)) = 1. If p is the smallest prime such that (-a(1)*a(2)*...*a(n-1) / p) = 1, then a(n) >= p. Conjecture: For all n, a(n) = p. Note that if b is such that b^2 == -a(1)*a(2)*...*a(n-1) (mod p) and for some I, b == prod_{i in I} a(i) (mod p), then a(n) = p. Heuristically, I must exist for large enough n, since the number of possible subsets I is much larger than p. - Max Alekseyev, Nov 11 2009, May 20 2015
EXAMPLE
a(4)=11 which is the smallest prime dividing the 4 partitions 2+3*5=17, 3+2*5=13, 5+2*3=11, 1+2*3*5=31.
MAPLE
with(numtheory):p:=proc(N) local S, d : S:=NULL:for d in divisors(N) while d^2<=N do S:=S, divisors(d+N/d)[2] od : return(min(S)) end:
a :=n->if n = 1 then 2 else p(mul(a(i), i = 1 .. n-1)) fi :
seq(a(n), n=1..15);
# Robert FERREOL, Oct 01 2019
MATHEMATICA
p[N_Integer] := Module[{S = {}, d, divisorsList},
For[d = 1, d^2 <= N, d++, If[Divisible[N, d], divisorsList = Divisors[d + N/d];
If[Length[divisorsList] >= 2, AppendTo[S, divisorsList[[2]]]]; ]]; Min[S]];
a[n_Integer] := If[n == 1, 2, p[Times @@ Table[a[i], {i, 1, n - 1}]]];
Table[a[n], {n, 1, 14}] (* Hilko Koning, Oct 30 2024 *)
PROG
(PARI) { A167604_list() = my(a, A, p, b, q, z, m); a = []; A=1; while(1, p=2; while( kronecker(-A, p)!=1, p=nextprime(p+1) ); b=lift(sqrt(-A+O(p))); z=znprimroot(p); m=nextprime(random(10^6)); q=lift(prod(i=1, #a, Mod(1+x^znlog(Mod(a[i], p), z, p-1), (1-x^(p-1))*Mod(1, m)) )); if( polcoeff(q, znlog(Mod(b, p), z, p-1), x)==0, error("conjecture failed mod", m)); a=concat(a, [p]); A*=p; print1(p, ", ") ) } /* Max Alekseyev, May 20 2015 */
CROSSREFS
A167605 lists such n that the first n terms of a(n) is a permutation of the first n primes.
A000945 is the original Euclid-Mullin sequence (where I is restricted to the empty set).
Cf. A344020.
Sequence in context: A067078 A124561 A355503 * A065510 A006721 A111289
KEYWORD
nonn
AUTHOR
Kok Seng Chua (chuakokseng(AT)hotmail.com), Nov 07 2009
EXTENSIONS
Edited and extended by Max Alekseyev, Nov 11 2009
STATUS
approved