Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 18 2016 00:43:44
%S 1,-14,124,-1112,11504,-121440,1235392,-12400000,125394688,
%T -1274938880,12949806080,-131304445952,1331250655232,-13503545892864,
%U 136990201856000,-1389579896979456,14094585311461376
%N Expansion of 1/(1+14*x+72*x^2+384*x^3+512*x^4).
%C The limit of a(n+1)/a(n) tends to 8*(-1.2679237217317025...).
%H G. C. Greubel, <a href="/A167602/b167602.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (-14,-72,-384,-512).
%F a(n+4) + 14*a(n+3) + 72*a(n+2) + 384*a(n+1) + 512*a(n) = 0. - _G. C. Greubel_, Jun 17 2016
%t Clear[p, q, x, t, n];
%t p[z_]:= 1 + 6 *z + 9 *z^2 + 14* z^3 + 8 *z^4;
%t q[x_]:= 1/Expand[x^4*p[1/x]];
%t a = Table[8^(n + 1)*SeriesCoefficient[ Series[q[t], {t, 0, 60}], n], {n, 0, 60}]
%t LinearRecurrence[{-14, -72, -384, -512}, {1, -14, 124, -1112}, 100] (* _G. C. Greubel_, Jun 17 2016 *)
%o (PARI) Vec(1/(1+14*x+72*x^2+384*x^3+512*x^4)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%K sign,easy
%O 0,2
%A _Roger L. Bagula_, Nov 06 2009
%E Definition rephrased. - _R. J. Mathar_, Jul 02 2012