login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329045
Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(A329044(i)) = A046523(A329044(j)) for all i, j.
10
1, 2, 2, 3, 2, 3, 2, 4, 4, 3, 2, 5, 2, 3, 6, 7, 2, 7, 2, 5, 6, 3, 2, 8, 9, 3, 4, 5, 2, 10, 2, 4, 6, 3, 11, 12, 2, 3, 6, 4, 2, 4, 2, 5, 10, 3, 2, 8, 13, 14, 6, 5, 2, 7, 9, 15, 6, 3, 2, 16, 2, 3, 16, 7, 17, 18, 2, 5, 6, 19, 2, 20, 2, 3, 21, 5, 22, 18, 2, 7, 13, 3, 2, 7, 23, 3, 6, 15, 2, 24, 25, 5, 6, 3, 26, 27, 2, 28, 24, 13, 2, 18, 2, 15, 29
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of function f(n) = A046523(A329044(n)).
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A324888(i) = A324888(j),
a(i) = a(j) => A329046(i) = A329046(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
v329045 = rgs_transform(vector(up_to, n, A046523(A329044(n))));
A329045(n) = v329045[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 08 2019
STATUS
approved