login
A329042
a(n) = Product_{d|n, d>1} A008578(1+A286561(A122111(n),d)), where A286561(x,d) gives the exponent of the highest power of d dividing x.
3
1, 2, 1, 1, 1, 8, 1, 1, 6, 3, 1, 2, 1, 5, 3, 1, 1, 2, 1, 48, 3, 7, 1, 2, 1, 11, 1, 10, 1, 128, 1, 1, 3, 13, 1, 2, 1, 17, 3, 6, 1, 12, 1, 21, 3, 19, 1, 2, 1, 2, 3, 33, 1, 1, 1, 320, 3, 23, 1, 8, 1, 29, 1, 1, 1, 20, 1, 65, 3, 8, 1, 2, 1, 31, 48, 85, 1, 28, 1, 6, 1, 37, 1, 3072, 1, 41, 3, 42, 1, 8, 1, 133, 3, 43, 1, 2, 1, 1, 1, 1, 1, 44, 1, 66, 12
OFFSET
1,2
FORMULA
a(n) = Product_{d|n, d>1} A008578(1+A286561(A122111(n),d)).
1+A001222(a(n)) = A329036(n).
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A329042(n) = { my(m=1, x=A122111(n), v); fordiv(n, d, if((d>1) && ((v = valuation(x, d))>0), m *= prime(v))); (m); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 08 2019
STATUS
approved