login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A329043
a(n) = Product_{d|A122111(n), d>1} A008578(1+A286561(n,d)), where A286561(n,d) gives the exponent of the highest power of d dividing n.
3
1, 2, 1, 1, 1, 8, 1, 1, 6, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 48, 2, 2, 1, 5, 1, 2, 1, 6, 1, 128, 1, 1, 2, 2, 1, 3, 1, 2, 2, 10, 1, 8, 1, 6, 2, 2, 1, 7, 1, 3, 2, 6, 1, 1, 1, 320, 2, 2, 1, 12, 1, 2, 1, 1, 1, 8, 1, 6, 2, 8, 1, 3, 1, 2, 48, 6, 1, 8, 1, 21, 1, 2, 1, 3072, 1, 2, 2, 20, 1, 8, 1, 6, 2, 2, 1, 11, 1, 1, 1, 1, 1, 8, 1, 20, 8
OFFSET
1,2
FORMULA
a(n) = Product_{d|A122111(n), d>1} A008578(1+A286561(n,d)).
1+A001222(a(n)) = A329036(n).
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A329043(n) = { my(m=1, v); fordiv(A122111(n), d, if((d>1) && ((v = valuation(n, d))>0), m *= prime(v))); (m); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 08 2019
STATUS
approved