Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Nov 08 2019 18:16:33
%S 1,2,2,3,2,3,2,4,4,3,2,5,2,3,6,7,2,7,2,5,6,3,2,8,9,3,4,5,2,10,2,4,6,3,
%T 11,12,2,3,6,4,2,4,2,5,10,3,2,8,13,14,6,5,2,7,9,15,6,3,2,16,2,3,16,7,
%U 17,18,2,5,6,19,2,20,2,3,21,5,22,18,2,7,13,3,2,7,23,3,6,15,2,24,25,5,6,3,26,27,2,28,24,13,2,18,2,15,29
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(A329044(i)) = A046523(A329044(j)) for all i, j.
%C Restricted growth sequence transform of function f(n) = A046523(A329044(n)).
%C For all i, j:
%C A305800(i) = A305800(j) => a(i) = a(j),
%C a(i) = a(j) => A324888(i) = A324888(j),
%C a(i) = a(j) => A329046(i) = A329046(j).
%H Antti Karttunen, <a href="/A329045/b329045.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A034386(n) = prod(i=1, primepi(n), prime(i));
%o A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A324886(n) = A276086(A108951(n));
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A329044(n) = A064989(A324886(n));
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o v329045 = rgs_transform(vector(up_to, n, A046523(A329044(n))));
%o A329045(n) = v329045[n];
%Y Cf. A034386, A064989, A108951, A276086, A305800, A324886, A324888, A329044, A329046.
%Y Cf. also A278226, A286626.
%K nonn
%O 1,2
%A _Antti Karttunen_, Nov 08 2019