login
A329048
Lexicographically earliest infinite sequence such that a(i) = a(j) => A329038(i) = A329038(j) for all i, j.
3
1, 2, 2, 3, 4, 5, 2, 6, 3, 7, 8, 9, 4, 10, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2, 26, 6, 27, 28, 29, 3, 30, 7, 31, 32, 33, 8, 34, 9, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4, 50, 10, 51, 52, 53, 5, 54, 11, 55, 56, 57, 12, 58, 13, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 14, 74, 15, 75, 76, 77, 16
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of A329038, i.e., of function f(n) = A246277(A276086(n)).
For all i, j:
a(i) = a(j) => A286626(i) = A286626(j),
a(i) = a(j) => A276088(i) = A276088(j),
a(i) = a(j) => A276153(i) = A276153(j),
LINKS
PROG
(PARI)
up_to = 32768;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f)/2);
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
v329048 = rgs_transform(vector(1+up_to, n, A329038(n-1)));
A329048(n) = v329048[1+n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2019
STATUS
approved