Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #27 Sep 08 2022 08:45:38
%S 1,1,2,2,3,3,4,5,7,9,12,16,21,28,37,50,66,88,116,154,203,269,356,472,
%T 625,828,1097,1453,1925,2550,3379,4476,5930,7855,10406,13784,18260,
%U 24189,32044,42449,56233,74493,98682,130726,173175,229409,303902,402585
%N Expansion of 1/(1 - x - x^2 + x^3 - x^7 + x^9 - x^11).
%H G. C. Greubel, <a href="/A147663/b147663.txt">Table of n, a(n) for n = 0..1000</a>
%H Curtis T. McMullen, <a href="http://abel.math.harvard.edu/~ctm/papers/index.html">Dynamics on K3 surfaces: Salem numbers and Siegel disks</a>, 2005.
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,0,1,0,-1,0,1).
%F G.f.: -1/((x^3 + x^2 - 1)*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)). - _Colin Barker_, Sep 18 2013
%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-7) - a(n-9) + a(n-10), n >= 10. - _Franck Maminirina Ramaharo_, Oct 31 2018
%t CoefficientList[Series[1/(1 - x - x^2 + x^3 - x^7 + x^9 - x^11), {x, 0, 50}], x] (* _Franck Maminirina Ramaharo_, Oct 31 2018 *)
%t LinearRecurrence[{1,1,-1,0,0,0,1,0,-1,0,1},{1,1,2,2,3,3,4,5,7,9,12},50] (* _Harvey P. Dale_, May 31 2020 *)
%o (PARI) Vec(-1/((x^3+x^2-1)*(x^8-x^7+x^5-x^4+x^3-x+1)) + O(x^50)) \\ _Colin Barker_, Sep 18 2013
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x-x^2+x^3-x^7+x^9-x^11))); // _G. C. Greubel_, Nov 03 2018
%Y Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.
%K nonn,easy
%O 0,3
%A _Roger L. Bagula_, Nov 09 2008
%E Heavily edited (because the Name, Comments, Formula and Mathematica code did not correspond to the terms of the sequence) by _Colin Barker_, Sep 18 2013