|
|
A218021
|
|
Shifts 4 places left under Euler transform with a(0)=0 and a(n)=1 for n < 4.
|
|
3
|
|
|
0, 1, 1, 1, 1, 1, 2, 3, 5, 7, 12, 18, 30, 47, 78, 125, 209, 341, 571, 946, 1592, 2663, 4503, 7594, 12898, 21891, 37334, 63691, 109039, 186816, 320913, 551829, 950842, 1640149, 2833866, 4901658, 8490019, 14720477, 25553525, 44401638, 77232183, 134457819
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1000
N. J. A. Sloane, Transforms
|
|
FORMULA
|
a(n) ~ c * d^n / n^(3/2), where d = 1.8065918193702780027972... and c = 1.041173202249532389463... . - Vaclav Kotesovec, Jun 23 2014
G.f.: x + x^2 + x^3 + x^4 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019
|
|
MAPLE
|
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1,
(add(add(d*a(d), d= divisors(j)) *b(n-j), j=1..n))/n)
end:
a:= n-> `if`(n<4, signum(n), b(n-4)):
seq(a(n), n=0..45);
|
|
MATHEMATICA
|
b[n_] := b[n] = If[n == 0, 1, (Sum[Sum[d*a[d], {d, Divisors[j]}]*b[n - j], {j, 1, n }])/n]; a[n_] := If[n < 4, Sign[n], b[n - 4]]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)
|
|
CROSSREFS
|
Column k=4 of A144018.
Cf. A316076.
Sequence in context: A013983 A257863 A169986 * A137713 A326490 A191385
Adjacent sequences: A218018 A218019 A218020 * A218022 A218023 A218024
|
|
KEYWORD
|
nonn,eigen
|
|
AUTHOR
|
Alois P. Heinz, Oct 18 2012
|
|
STATUS
|
approved
|
|
|
|