login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218021
Shifts 4 places left under Euler transform with a(0)=0 and a(n)=1 for n < 4.
3
0, 1, 1, 1, 1, 1, 2, 3, 5, 7, 12, 18, 30, 47, 78, 125, 209, 341, 571, 946, 1592, 2663, 4503, 7594, 12898, 21891, 37334, 63691, 109039, 186816, 320913, 551829, 950842, 1640149, 2833866, 4901658, 8490019, 14720477, 25553525, 44401638, 77232183, 134457819
OFFSET
0,7
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 1.8065918193702780027972... and c = 1.041173202249532389463... . - Vaclav Kotesovec, Jun 23 2014
G.f.: x + x^2 + x^3 + x^4 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1,
(add(add(d*a(d), d= divisors(j)) *b(n-j), j=1..n))/n)
end:
a:= n-> `if`(n<4, signum(n), b(n-4)):
seq(a(n), n=0..45);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, (Sum[Sum[d*a[d], {d, Divisors[j]}]*b[n - j], {j, 1, n }])/n]; a[n_] := If[n < 4, Sign[n], b[n - 4]]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A144018.
Cf. A316076.
Sequence in context: A013983 A257863 A169986 * A137713 A326490 A191385
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Oct 18 2012
STATUS
approved