login
A218018
Triangle, read by rows, where T(n,k) = k!*C(n, k)*11^(n-k) for n>=0, k=0..n.
1
1, 11, 1, 121, 22, 2, 1331, 363, 66, 6, 14641, 5324, 1452, 264, 24, 161051, 73205, 26620, 7260, 1320, 120, 1771561, 966306, 439230, 159720, 43560, 7920, 720, 19487171, 12400927, 6764142, 3074610, 1118040, 304920, 55440, 5040, 214358881
OFFSET
0,2
COMMENTS
Triangle formed by the derivatives of x^n evaluated at x=11. Also:
first column: A001020;
second column: A081127;
third column: 2*A081141.
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
FORMULA
T(n,k) = 11^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(11*x)*x^k.
EXAMPLE
Triangle begins:
1;
11, 1;
121, 22, 2;
1331, 363, 66, 6;
14641, 5324, 1452, 264, 24;
161051, 73205, 26620, 7260, 1320, 120;
1771561, 966306, 439230, 159720, 43560, 7920, 720;
19487171, 12400927, 6764142, 3074610, 1118040, 304920, 55440, 5040; etc.
MATHEMATICA
Flatten[Table[n!/(n-k)! * 11^(n-k), {n, 0, 10}, {k, 0, n}]]
PROG
(Magma) [Factorial(n)/Factorial(n-k)*11^(n-k): k in [0..n], n in [0..10]];
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Vincenzo Librandi, Nov 17 2012
STATUS
approved